<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                # 使用 Keras 的用于 CIFAR10 的 ConvNets 讓我們在 Keras 重復 LeNet CNN 模型構建和 CIFAR10 數據訓練。我們保持架構與前面的示例相同,以便輕松解釋概念。在 Keras 中,損失層添加如下: ```py model.add(Dropout(0.2)) ``` 用于 CIFAR10 CNN 模型的 Keras 中的完整代碼在筆記本 `ch-09b_CNN_CIFAR10_TF_and_Keras` 中提供。 在運行模型時,我們得到以下模型描述: ```py _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_1 (Conv2D) (None, 32, 32, 32) 1568 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 16, 16, 32) 0 _________________________________________________________________ dropout_1 (Dropout) (None, 16, 16, 32) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 16, 16, 64) 32832 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 8, 8, 64) 0 _________________________________________________________________ dropout_2 (Dropout) (None, 8, 8, 64) 0 _________________________________________________________________ flatten_1 (Flatten) (None, 4096) 0 _________________________________________________________________ dense_1 (Dense) (None, 1024) 4195328 _________________________________________________________________ dropout_3 (Dropout) (None, 1024) 0 _________________________________________________________________ dense_2 (Dense) (None, 10) 10250 ================================================================= Total params: 4,239,978 Trainable params: 4,239,978 Non-trainable params: 0 _________________________________________________________________ ``` 我們得到以下訓練和評估結果: ```py Epoch 1/10 50000/50000 [====================] - 191s - loss: 1.5847 - acc: 0.4364 Epoch 2/10 50000/50000 [====================] - 202s - loss: 1.1491 - acc: 0.5973 Epoch 3/10 50000/50000 [====================] - 223s - loss: 0.9838 - acc: 0.6582 Epoch 4/10 50000/50000 [====================] - 223s - loss: 0.8612 - acc: 0.7009 Epoch 5/10 50000/50000 [====================] - 224s - loss: 0.7564 - acc: 0.7394 Epoch 6/10 50000/50000 [====================] - 217s - loss: 0.6690 - acc: 0.7710 Epoch 7/10 50000/50000 [====================] - 222s - loss: 0.5925 - acc: 0.7945 Epoch 8/10 50000/50000 [====================] - 221s - loss: 0.5263 - acc: 0.8191 Epoch 9/10 50000/50000 [====================] - 237s - loss: 0.4692 - acc: 0.8387 Epoch 10/10 50000/50000 [====================] - 230s - loss: 0.4320 - acc: 0.8528 Test loss: 0.849927025414 Test accuracy: 0.7414 ``` 再次,我們將其作為挑戰,讓讀者探索并嘗試不同的 LeNet 架構和超參數變體,以實現更高的準確性。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看