# 多類分類
多類分類的一個流行示例是標記手寫數字的圖像。此示例中的類或標簽為{0,1,2,3,4,5,6,7,8,9}。在以下示例中,我們將使用 MNIST。讓我們像前面章節中所做的那樣加載 MNIST 圖像,代碼如下:
```py
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(os.path.join(
datasetslib.datasets_root, 'mnist'), one_hot=True)
```
如果已按照前一章的說明下載了 MNIST 數據集,那么我們將獲得以下輸出:
```py
Extracting /Users/armando/datasets/mnist/train-images-idx3-ubyte.gz
Extracting /Users/armando/datasets/mnist/train-labels-idx1-ubyte.gz
Extracting /Users/armando/datasets/mnist/t10k-images-idx3-ubyte.gz
Extracting /Users/armando/datasets/mnist/t10k-labels-idx1-ubyte.gz
```
現在讓我們設置一些參數,如下面的代碼所示:
```py
num_outputs = 10 # 0-9 digits
num_inputs = 784 # total pixels
learning_rate = 0.001
num_epochs = 1
batch_size = 100
num_batches = int(mnist.train.num_examples/batch_size)
```
上面代碼中的參數如下:
* `num_outputs`:由于我們必須預測圖像代表十位數中的哪一位,因此我們將輸出數設置為 10.數字由打開或設置為 1 的輸出表示。
* `num_inputs`:我們知道我們的輸入數字是 28 x 28 像素,因此每個像素都是模型的輸入。因此,我們總共有 784 個輸入。
* `learning_rate`:此參數表示梯度下降優化器算法的學習率。我們將學習率任意設定為 0.001。
* `num_epochs`:我們將僅針對一次迭代運行我們的第一個示例,因此我們將周期數設置為 1。
* `batch_size`:在現實世界中,我們可能擁有龐大的數據集并加載整個數據集以便訓練模型可能是不可能的。因此,我們將輸入數據分成隨機選擇的批次。我們將`batch_size`設置為 100 個圖像,可以使用 TensorFlow 的內置算法一次選擇。
* `num_batches`:此參數設置應從總數據集中選擇批次的次數;我們將其設置為等于數據集中的項目數除以批量中的項目數。
我們鼓勵您嘗試使用這些參數的不同值。
現在讓我們使用以下代碼定義輸入,輸出,參數,模型和損失函數:
```py
# input images
x = tf.placeholder(dtype=tf.float32, shape=[None, num_inputs], name="x")
# output labels
y = tf.placeholder(dtype=tf.float32, shape=[None, num_outputs], name="y")
# model paramteres
w = tf.Variable(tf.zeros([784, 10]), name="w")
b = tf.Variable(tf.zeros([10]), name="b")
model = tf.nn.softmax(tf.matmul(x, w) + b)
loss = tf.reduce_mean(-tf.reduce_sum(y * tf.log(model), axis=1))
optimizer = tf.train.GradientDescentOptimizer(
learning_rate=learning_rate).minimize(loss)
```
代碼類似于二分類示例,但有一個顯著差異:我們使用`softmax`而不是`sigmoid`函數。 Softmax 用于多類分類,而 sigmoid 用于二元類分類。 Softmax 函數是 sigmoid 函數的推廣,它將任意實數值的 n 維向量 z 轉換為實數值的 n 維向量 _σ(z)_,范圍`(0, 1]`和為 1。
現在讓我們運行模型并打印精度:
```py
with tf.Session() as tfs:
tf.global_variables_initializer().run()
for epoch in range(num_epochs):
for batch in range(num_batches):
batch_x, batch_y = mnist.train.next_batch(batch_size)
tfs.run(optimizer, feed_dict={x: batch_x, y: batch_y})
predictions_check = tf.equal(tf.argmax(model, 1), tf.argmax(y, 1))
accuracy_function = tf.reduce_mean(
tf.cast(predictions_check, tf.float32))
feed_dict = {x: mnist.test.images, y: mnist.test.labels}
accuracy_score = tfs.run(accuracy_function, feed_dict)
print("epoch {0:04d} accuracy={1:.8f}".format(
epoch, accuracy_score))
```
我們得到以下準確率:
```py
epoch 0000 accuracy=0.76109999
```
讓我們嘗試在多次迭代中訓練我們的模型,以便在每次迭代中學習不同的批次。我們建立了兩個支持函數來幫助我們:
```py
def mnist_batch_func(batch_size=100):
batch_x, batch_y = mnist.train.next_batch(batch_size)
return [batch_x, batch_y]
```
上述函數將批量中的示例數作為輸入,并使用`mnist.train.next_batch()`函數返回一批特征(`batch_x`)和目標(`batch_y`):
```py
def tensorflow_classification(num_epochs, num_batches, batch_size,
batch_func, optimizer, test_x, test_y):
accuracy_epochs = np.empty(shape=[num_epochs], dtype=np.float32)
with tf.Session() as tfs:
tf.global_variables_initializer().run()
for epoch in range(num_epochs):
for batch in range(num_batches):
batch_x, batch_y = batch_func(batch_size)
feed_dict = {x: batch_x, y: batch_y}
tfs.run(optimizer, feed_dict)
predictions_check = tf.equal(
tf.argmax(model, 1), tf.argmax(y, 1))
accuracy_function = tf.reduce_mean(
tf.cast(predictions_check, tf.float32))
feed_dict = {x: test_x, y: test_y}
accuracy_score = tfs.run(accuracy_function, feed_dict)
accuracy_epochs[epoch] = accuracy_score
print("epoch {0:04d} accuracy={1:.8f}".format(
epoch, accuracy_score))
plt.figure(figsize=(14, 8))
plt.axis([0, num_epochs, np.min(
accuracy_epochs), np.max(accuracy_epochs)])
plt.plot(accuracy_epochs, label='Accuracy Score')
plt.title('Accuracy over Iterations')
plt.xlabel('# Epoch')
plt.ylabel('Accuracy Score')
plt.legend()
plt.show()
```
上述函數獲取參數并執行訓練迭代,打印每次迭代的準確率分數并打印準確率分數。它還可以保存`accuracy_epochs`數組中每個周期的準確率分數。之后,它繪制了每個周期的準確性。讓我們使用我們之前設置的參數運行此函數 30 個周期,使用以下代碼:
```py
num_epochs=30
tensorflow_classification(num_epochs=num_epochs,
num_batches=num_batches,
batch_size=batch_size,
batch_func=mnist_batch_func,
optimizer=optimizer,
test_x=mnist.test.images,test_y=mnist.test.labels)
```
我們得到以下準確率和圖表:
```py
epoch 0000 accuracy=0.76020002
epoch 0001 accuracy=0.79420000
epoch 0002 accuracy=0.81230003
epoch 0003 accuracy=0.82309997
epoch 0004 accuracy=0.83230001
epoch 0005 accuracy=0.83770001
--- epoch 6 to 24 removed for brevity ---
epoch 0025 accuracy=0.87930000
epoch 0026 accuracy=0.87970001
epoch 0027 accuracy=0.88059998
epoch 0028 accuracy=0.88120002
epoch 0029 accuracy=0.88180000
```

從圖中我們可以看出,初始迭代中的準確率會急劇提高,然后準確率的提高速度會降低。稍后,我們將看到如何在 TensorFlow 中使用神經網絡的全部功能,并將此分類精度提高到更大的值。
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代碼預熱 - Hello TensorFlow
- 張量
- 常量
- 操作
- 占位符
- 從 Python 對象創建張量
- 變量
- 從庫函數生成的張量
- 使用相同的值填充張量元素
- 用序列填充張量元素
- 使用隨機分布填充張量元素
- 使用tf.get_variable()獲取變量
- 數據流圖或計算圖
- 執行順序和延遲加載
- 跨計算設備執行圖 - CPU 和 GPU
- 將圖節點放置在特定的計算設備上
- 簡單放置
- 動態展示位置
- 軟放置
- GPU 內存處理
- 多個圖
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 詳情
- 總結
- TensorFlow 的高級庫
- TF Estimator - 以前的 TF 學習
- TF Slim
- TFLearn
- 創建 TFLearn 層
- TFLearn 核心層
- TFLearn 卷積層
- TFLearn 循環層
- TFLearn 正則化層
- TFLearn 嵌入層
- TFLearn 合并層
- TFLearn 估計層
- 創建 TFLearn 模型
- TFLearn 模型的類型
- 訓練 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 總結
- Keras 101
- 安裝 Keras
- Keras 中的神經網絡模型
- 在 Keras 建立模型的工作流程
- 創建 Keras 模型
- 用于創建 Keras 模型的順序 API
- 用于創建 Keras 模型的函數式 API
- Keras 層
- Keras 核心層
- Keras 卷積層
- Keras 池化層
- Keras 本地連接層
- Keras 循環層
- Keras 嵌入層
- Keras 合并層
- Keras 高級激活層
- Keras 正則化層
- Keras 噪音層
- 將層添加到 Keras 模型
- 用于將層添加到 Keras 模型的順序 API
- 用于向 Keras 模型添加層的函數式 API
- 編譯 Keras 模型
- 訓練 Keras 模型
- 使用 Keras 模型進行預測
- Keras 的附加模塊
- MNIST 數據集的 Keras 序列模型示例
- 總結
- 使用 TensorFlow 進行經典機器學習
- 簡單的線性回歸
- 數據準備
- 構建一個簡單的回歸模型
- 定義輸入,參數和其他變量
- 定義模型
- 定義損失函數
- 定義優化器函數
- 訓練模型
- 使用訓練的模型進行預測
- 多元回歸
- 正則化回歸
- 套索正則化
- 嶺正則化
- ElasticNet 正則化
- 使用邏輯回歸進行分類
- 二分類的邏輯回歸
- 多類分類的邏輯回歸
- 二分類
- 多類分類
- 總結
- 使用 TensorFlow 和 Keras 的神經網絡和 MLP
- 感知機
- 多層感知機
- 用于圖像分類的 MLP
- 用于 MNIST 分類的基于 TensorFlow 的 MLP
- 用于 MNIST 分類的基于 Keras 的 MLP
- 用于 MNIST 分類的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 總結
- 用于時間序列回歸的 MLP
- 總結
- 使用 TensorFlow 和 Keras 的 RNN
- 簡單循環神經網絡
- RNN 變種
- LSTM 網絡
- GRU 網絡
- TensorFlow RNN
- TensorFlow RNN 單元類
- TensorFlow RNN 模型構建類
- TensorFlow RNN 單元包裝器類
- 適用于 RNN 的 Keras
- RNN 的應用領域
- 用于 MNIST 數據的 Keras 中的 RNN
- 總結
- 使用 TensorFlow 和 Keras 的時間序列數據的 RNN
- 航空公司乘客數據集
- 加載 airpass 數據集
- 可視化 airpass 數據集
- 使用 TensorFlow RNN 模型預處理數據集
- TensorFlow 中的簡單 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型預處理數據集
- 使用 Keras 的簡單 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 總結
- 使用 TensorFlow 和 Keras 的文本數據的 RNN
- 詞向量表示
- 為 word2vec 模型準備數據
- 加載和準備 PTB 數據集
- 加載和準備 text8 數據集
- 準備小驗證集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可視化單詞嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 總結
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷積
- 了解池化
- CNN 架構模式 - LeNet
- 用于 MNIST 數據的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 數據的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 總結
- 使用 TensorFlow 和 Keras 的自編碼器
- 自編碼器類型
- TensorFlow 中的棧式自編碼器
- Keras 中的棧式自編碼器
- TensorFlow 中的去噪自編碼器
- Keras 中的去噪自編碼器
- TensorFlow 中的變分自編碼器
- Keras 中的變分自編碼器
- 總結
- TF 服務:生產中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢復模型
- 使用保護程序類保存和恢復所有圖變量
- 使用保護程序類保存和恢復所選變量
- 保存和恢復 Keras 模型
- TensorFlow 服務
- 安裝 TF 服務
- 保存 TF 服務的模型
- 提供 TF 服務模型
- 在 Docker 容器中提供 TF 服務
- 安裝 Docker
- 為 TF 服務構建 Docker 鏡像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服務
- 安裝 Kubernetes
- 將 Docker 鏡像上傳到 dockerhub
- 在 Kubernetes 部署
- 總結
- 遷移學習和預訓練模型
- ImageNet 數據集
- 再訓練或微調模型
- COCO 動物數據集和預處理圖像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中預訓練的 VGG16 進行圖像分類
- TensorFlow 中的圖像預處理,用于預訓練的 VGG16
- 使用 TensorFlow 中的再訓練的 VGG16 進行圖像分類
- Keras 的 VGG16
- 使用 Keras 中預訓練的 VGG16 進行圖像分類
- 使用 Keras 中再訓練的 VGG16 進行圖像分類
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 進行圖像分類
- 使用 TensorFlow 中的再訓練的 Inception v3 進行圖像分類
- 總結
- 深度強化學習
- OpenAI Gym 101
- 將簡單的策略應用于 cartpole 游戲
- 強化學習 101
- Q 函數(在模型不可用時學習優化)
- RL 算法的探索與開發
- V 函數(模型可用時學習優化)
- 強化學習技巧
- 強化學習的樸素神經網絡策略
- 實現 Q-Learning
- Q-Learning 的初始化和離散化
- 使用 Q-Table 進行 Q-Learning
- Q-Network 或深 Q 網絡(DQN)的 Q-Learning
- 總結
- 生成性對抗網絡
- 生成性對抗網絡 101
- 建立和訓練 GAN 的最佳實踐
- 使用 TensorFlow 的簡單的 GAN
- 使用 Keras 的簡單的 GAN
- 使用 TensorFlow 和 Keras 的深度卷積 GAN
- 總結
- 使用 TensorFlow 集群的分布式模型
- 分布式執行策略
- TensorFlow 集群
- 定義集群規范
- 創建服務器實例
- 定義服務器和設備之間的參數和操作
- 定義并訓練圖以進行異步更新
- 定義并訓練圖以進行同步更新
- 總結
- 移動和嵌入式平臺上的 TensorFlow 模型
- 移動平臺上的 TensorFlow
- Android 應用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 應用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 總結
- R 中的 TensorFlow 和 Keras
- 在 R 中安裝 TensorFlow 和 Keras 軟件包
- R 中的 TF 核心 API
- R 中的 TF 估計器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 總結
- 調試 TensorFlow 模型
- 使用tf.Session.run()獲取張量值
- 使用tf.Print()打印張量值
- 用tf.Assert()斷言條件
- 使用 TensorFlow 調試器(tfdbg)進行調試
- 總結
- 張量處理單元