<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # 使用保護程序類保存和恢復所有圖變量 我們進行如下: 1. 要使用`saver`類,首先要創建此類的對象: ```py saver = tf.train.Saver() ``` 1. 保存圖中所有變量的最簡單方法是使用以下兩個參數調用`save()`方法:會話對象和磁盤上保存變量的文件的路徑: ```py with tf.Session() as tfs: ... saver.save(tfs,"saved-models/model.ckpt") ``` 1. 要恢復變量,調用`restore()`方法: ```py with tf.Session() as tfs: saver.restore(tfs,"saved-models/model.ckpt") ... ``` 1. 讓我們重溫一下[第 1 章](../Text/8.html),TensorFlow 101 的例子,在簡單的例子中保存變量的代碼如下: ```py # Assume Linear Model y = w * x + b # Define model parameters w = tf.Variable([.3], tf.float32) b = tf.Variable([-.3], tf.float32) # Define model input and output x = tf.placeholder(tf.float32) y = w * x + b output = 0 # create saver object saver = tf.train.Saver() with tf.Session() as tfs: # initialize and print the variable y tfs.run(tf.global_variables_initializer()) output = tfs.run(y,{x:[1,2,3,4]}) saved_model_file = saver.save(tfs, 'saved-models/full-graph-save-example.ckpt') print('Model saved in {}'.format(saved_model_file)) print('Values of variables w,b: {}{}' .format(w.eval(),b.eval())) print('output={}'.format(output)) ``` 我們得到以下輸出: ```py Model saved in saved-models/full-graph-save-example.ckpt Values of variables w,b: [ 0.30000001][-0.30000001] output=[ 0\. 0.30000001 0.60000002 0.90000004] ``` 1. 現在讓我們從剛剛創建的檢查點文件中恢復變量: ```py # Assume Linear Model y = w * x + b # Define model parameters w = tf.Variable([0], dtype=tf.float32) b = tf.Variable([0], dtype=tf.float32) # Define model input and output x = tf.placeholder(dtype=tf.float32) y = w * x + b output = 0 # create saver object saver = tf.train.Saver() with tf.Session() as tfs: saved_model_file = saver.restore(tfs, 'saved-models/full-graph-save-example.ckpt') print('Values of variables w,b: {}{}' .format(w.eval(),b.eval())) output = tfs.run(y,{x:[1,2,3,4]}) print('output={}'.format(output)) ``` 您會注意到在恢復代碼中我們沒有調用`tf.global_variables_initializer()`,因為不需要初始化變量,因為它們將從文件中恢復。我們得到以下輸出,它是根據恢復的變量計算得出的: ```py INFO:tensorflow:Restoring parameters from saved-models/full-graph-save-example.ckpt Values of variables w,b: [ 0.30000001][-0.30000001] output=[ 0\. 0.30000001 0.60000002 0.90000004] ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看