<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                # 使用 Keras 的 GRU 使用 TensorFlow 和 Keras 的一個優點是它們可以輕松創建模型。與 LSTM 一樣,創建 GRU 模型只需添加 GRU 層而不是 LSTM 或 SimpleRNN 層,如下所示: ```py model.add(GRU(units=4, input_shape=(X_train.shape[1], X_train.shape[2]))) ``` 模型結構如下: ```py Layer (type) Output Shape Param # ================================================================= gru_1 (GRU) (None, 4) 72 _________________________________________________________________ dense_1 (Dense) (None, 1) 5 ================================================================= Total params: 77 Trainable params: 77 Non-trainable params: 0 ``` 筆記本 `ch-07b_RNN_TimeSeries_Keras`中提供了 GRU 模型的完整代碼。 正如預期的那樣,GRU 模型顯示出與 LSTM 幾乎相同的表現,我們讓您嘗試使用不同的超參數值來優化此模型: ```py Train Score: 31.49 RMSE Test Score: 92.75 RMSE ``` ![](https://img.kancloud.cn/a8/41/a8410aa05a7cdefa8209a77e4d0ce814_923x610.png)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看