# 用于時間序列回歸的 MLP
我們已經看到了圖像數據分類的例子;現在讓我們看一下時間序列數據的回歸。我們將建立并使用 MLP 作為一個較小的單變量時間序列數據集,稱為國際航空公司乘客數據集。該數據集包含多年來的乘客總數。該數據集可從以下鏈接獲得:
* [https://www.kaggle.com/andreazzini/international-airline-passengers/data](https://www.kaggle.com/andreazzini/international-airline-passengers/data)
* [https://datamarket.com/data/set/22u3/international-airline-passengers-monthly-totals-in-thousands-jan-49-dec-60](https://datamarket.com/data/set/22u3/international-airline-passengers-monthly-totals-in-thousands-jan-49-dec-60)
讓我們從準備數據集開始。
1. 首先,使用以下代碼加載數據集:
```py
filename = os.path.join(datasetslib.datasets_root,
'ts-data',
'international-airline-passengers-cleaned.csv')
dataframe = pd.read_csv(filename,usecols=[1],header=0)
dataset = dataframe.values
dataset = dataset.astype('float32')
```
1. 利用`datasetslib`的效用函數,我們將數據集分成測試和訓練集。對于時間序列數據集,我們有一個單獨的函數,不會改變觀察結果,因為對于時間序列回歸,我們需要維持觀察的順序。我們使用 67%的數據進行訓練,33%的數據用于測試。您可能希望嘗試使用不同比例的示例。
```py
train,test=dsu.train_test_split(dataset,train_size=0.67)
```
1. 對于時間序列回歸,我們轉換數據集以構建監督數據集。在此示例中,我們使用兩個時間步長的滯后。我們將`n_x`設置為 2,`mvts_to_xy()`函數返回輸入和輸出(`X`和`Y`)訓練和測試集,使得 X 在兩列和 Y 中具有時間{t-1,t}的值在一列中具有時間{t + 1}的值。我們的學習算法假設通過找到時間{t-1,t,t + 1}的值之間的關系,可以學習時間 t + 1 的值。
```py
# reshape into X=t-1,t and Y=t+1
n_x=2
n_y=1
X_train, Y_train, X_test, Y_test = tsd.mvts_to_xy(train,
test,n_x=n_x,n_y=n_y)
```
有關將時間序列數據集轉換為監督學習問題的更多信息,請訪問以下鏈接:[http://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/](http://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/).
現在我們在我們的訓練數據集上構建和訓練模型:
1. 我導入所需的 Keras 模塊:
```py
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
```
1. 設置構建模型所需的超參數:
```py
num_layers = 2
num_neurons = [8,8]
n_epochs = 50
batch_size = 2
```
請注意,我們使用批量大小為 2,因為數據集非常小。我們使用兩層 MLP,每層只有八個神經元,因為我們的示例問題的規模很小。
1. 構建,編譯和訓練模型:
```py
model = Sequential()
model.add(Dense(num_neurons[0], activation='relu',
input_shape=(n_x,)))
model.add(Dense(num_neurons[1], activation='relu'))
model.add(Dense(units=1))
model.summary()
model.compile(loss='mse', optimizer='adam')
model.fit(X_train, Y_train,
batch_size=batch_size,
epochs=n_epochs)
```
請注意,我們使用 Adam 優化器而不是 SGD。 您可能想要嘗試 TensorFlow 和 Keras 中可用的不同優化器。
1. 評估模型并打印均方誤差(MSE)和均方根誤差(RMSE):
```py
score = model.evaluate(X_test, Y_test)
print('\nTest mse:', score)
print('Test rmse:', math.sqrt(score))
```
我們得到以下輸出:
```py
Test mse: 5619.24934188
Test rmse: 74.96165247566114
```
1. 使用我們的模型預測值并繪制它們,用于測試和訓練數據集:
```py
# make predictions
Y_train_pred = model.predict(X_train)
Y_test_pred = model.predict(X_test)
# shift train predictions for plotting
Y_train_pred_plot = np.empty_like(dataset)
Y_train_pred_plot[:, :] = np.nan
Y_train_pred_plot[n_x-1:len(Y_train_pred)+n_x-1, :] = Y_train_pred
# shift test predictions for plotting
Y_test_pred_plot = np.empty_like(dataset)
Y_test_pred_plot[:, :] = np.nan
Y_test_pred_plot[len(Y_train_pred)+(n_x*2)-1:len(dataset)-1, :] = \
Y_test_pred
# plot baseline and predictions
plt.plot(dataset,label='Original Data')
plt.plot(Y_train_pred_plot,label='Y_train_pred')
plt.plot(Y_test_pred_plot,label='Y_test_pred')
plt.legend()
plt.show()
```
我們得到以下關于原始和預測時間序列值的圖:

如你所見,這是一個非常好的估計。然而,在現實生活中,數據本質上是多變量和復雜的。因此,我們將在后面的章節中看到時間序列數據的循環神經網絡架構。
- TensorFlow 101
- 什么是 TensorFlow?
- TensorFlow 核心
- 代碼預熱 - Hello TensorFlow
- 張量
- 常量
- 操作
- 占位符
- 從 Python 對象創建張量
- 變量
- 從庫函數生成的張量
- 使用相同的值填充張量元素
- 用序列填充張量元素
- 使用隨機分布填充張量元素
- 使用tf.get_variable()獲取變量
- 數據流圖或計算圖
- 執行順序和延遲加載
- 跨計算設備執行圖 - CPU 和 GPU
- 將圖節點放置在特定的計算設備上
- 簡單放置
- 動態展示位置
- 軟放置
- GPU 內存處理
- 多個圖
- TensorBoard
- TensorBoard 最小的例子
- TensorBoard 詳情
- 總結
- TensorFlow 的高級庫
- TF Estimator - 以前的 TF 學習
- TF Slim
- TFLearn
- 創建 TFLearn 層
- TFLearn 核心層
- TFLearn 卷積層
- TFLearn 循環層
- TFLearn 正則化層
- TFLearn 嵌入層
- TFLearn 合并層
- TFLearn 估計層
- 創建 TFLearn 模型
- TFLearn 模型的類型
- 訓練 TFLearn 模型
- 使用 TFLearn 模型
- PrettyTensor
- Sonnet
- 總結
- Keras 101
- 安裝 Keras
- Keras 中的神經網絡模型
- 在 Keras 建立模型的工作流程
- 創建 Keras 模型
- 用于創建 Keras 模型的順序 API
- 用于創建 Keras 模型的函數式 API
- Keras 層
- Keras 核心層
- Keras 卷積層
- Keras 池化層
- Keras 本地連接層
- Keras 循環層
- Keras 嵌入層
- Keras 合并層
- Keras 高級激活層
- Keras 正則化層
- Keras 噪音層
- 將層添加到 Keras 模型
- 用于將層添加到 Keras 模型的順序 API
- 用于向 Keras 模型添加層的函數式 API
- 編譯 Keras 模型
- 訓練 Keras 模型
- 使用 Keras 模型進行預測
- Keras 的附加模塊
- MNIST 數據集的 Keras 序列模型示例
- 總結
- 使用 TensorFlow 進行經典機器學習
- 簡單的線性回歸
- 數據準備
- 構建一個簡單的回歸模型
- 定義輸入,參數和其他變量
- 定義模型
- 定義損失函數
- 定義優化器函數
- 訓練模型
- 使用訓練的模型進行預測
- 多元回歸
- 正則化回歸
- 套索正則化
- 嶺正則化
- ElasticNet 正則化
- 使用邏輯回歸進行分類
- 二分類的邏輯回歸
- 多類分類的邏輯回歸
- 二分類
- 多類分類
- 總結
- 使用 TensorFlow 和 Keras 的神經網絡和 MLP
- 感知機
- 多層感知機
- 用于圖像分類的 MLP
- 用于 MNIST 分類的基于 TensorFlow 的 MLP
- 用于 MNIST 分類的基于 Keras 的 MLP
- 用于 MNIST 分類的基于 TFLearn 的 MLP
- 使用 TensorFlow,Keras 和 TFLearn 的 MLP 總結
- 用于時間序列回歸的 MLP
- 總結
- 使用 TensorFlow 和 Keras 的 RNN
- 簡單循環神經網絡
- RNN 變種
- LSTM 網絡
- GRU 網絡
- TensorFlow RNN
- TensorFlow RNN 單元類
- TensorFlow RNN 模型構建類
- TensorFlow RNN 單元包裝器類
- 適用于 RNN 的 Keras
- RNN 的應用領域
- 用于 MNIST 數據的 Keras 中的 RNN
- 總結
- 使用 TensorFlow 和 Keras 的時間序列數據的 RNN
- 航空公司乘客數據集
- 加載 airpass 數據集
- 可視化 airpass 數據集
- 使用 TensorFlow RNN 模型預處理數據集
- TensorFlow 中的簡單 RNN
- TensorFlow 中的 LSTM
- TensorFlow 中的 GRU
- 使用 Keras RNN 模型預處理數據集
- 使用 Keras 的簡單 RNN
- 使用 Keras 的 LSTM
- 使用 Keras 的 GRU
- 總結
- 使用 TensorFlow 和 Keras 的文本數據的 RNN
- 詞向量表示
- 為 word2vec 模型準備數據
- 加載和準備 PTB 數據集
- 加載和準備 text8 數據集
- 準備小驗證集
- 使用 TensorFlow 的 skip-gram 模型
- 使用 t-SNE 可視化單詞嵌入
- keras 的 skip-gram 模型
- 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本
- TensorFlow 中的 LSTM 文本生成
- Keras 中的 LSTM 文本生成
- 總結
- 使用 TensorFlow 和 Keras 的 CNN
- 理解卷積
- 了解池化
- CNN 架構模式 - LeNet
- 用于 MNIST 數據的 LeNet
- 使用 TensorFlow 的用于 MNIST 的 LeNet CNN
- 使用 Keras 的用于 MNIST 的 LeNet CNN
- 用于 CIFAR10 數據的 LeNet
- 使用 TensorFlow 的用于 CIFAR10 的 ConvNets
- 使用 Keras 的用于 CIFAR10 的 ConvNets
- 總結
- 使用 TensorFlow 和 Keras 的自編碼器
- 自編碼器類型
- TensorFlow 中的棧式自編碼器
- Keras 中的棧式自編碼器
- TensorFlow 中的去噪自編碼器
- Keras 中的去噪自編碼器
- TensorFlow 中的變分自編碼器
- Keras 中的變分自編碼器
- 總結
- TF 服務:生產中的 TensorFlow 模型
- 在 TensorFlow 中保存和恢復模型
- 使用保護程序類保存和恢復所有圖變量
- 使用保護程序類保存和恢復所選變量
- 保存和恢復 Keras 模型
- TensorFlow 服務
- 安裝 TF 服務
- 保存 TF 服務的模型
- 提供 TF 服務模型
- 在 Docker 容器中提供 TF 服務
- 安裝 Docker
- 為 TF 服務構建 Docker 鏡像
- 在 Docker 容器中提供模型
- Kubernetes 中的 TensorFlow 服務
- 安裝 Kubernetes
- 將 Docker 鏡像上傳到 dockerhub
- 在 Kubernetes 部署
- 總結
- 遷移學習和預訓練模型
- ImageNet 數據集
- 再訓練或微調模型
- COCO 動物數據集和預處理圖像
- TensorFlow 中的 VGG16
- 使用 TensorFlow 中預訓練的 VGG16 進行圖像分類
- TensorFlow 中的圖像預處理,用于預訓練的 VGG16
- 使用 TensorFlow 中的再訓練的 VGG16 進行圖像分類
- Keras 的 VGG16
- 使用 Keras 中預訓練的 VGG16 進行圖像分類
- 使用 Keras 中再訓練的 VGG16 進行圖像分類
- TensorFlow 中的 Inception v3
- 使用 TensorFlow 中的 Inception v3 進行圖像分類
- 使用 TensorFlow 中的再訓練的 Inception v3 進行圖像分類
- 總結
- 深度強化學習
- OpenAI Gym 101
- 將簡單的策略應用于 cartpole 游戲
- 強化學習 101
- Q 函數(在模型不可用時學習優化)
- RL 算法的探索與開發
- V 函數(模型可用時學習優化)
- 強化學習技巧
- 強化學習的樸素神經網絡策略
- 實現 Q-Learning
- Q-Learning 的初始化和離散化
- 使用 Q-Table 進行 Q-Learning
- Q-Network 或深 Q 網絡(DQN)的 Q-Learning
- 總結
- 生成性對抗網絡
- 生成性對抗網絡 101
- 建立和訓練 GAN 的最佳實踐
- 使用 TensorFlow 的簡單的 GAN
- 使用 Keras 的簡單的 GAN
- 使用 TensorFlow 和 Keras 的深度卷積 GAN
- 總結
- 使用 TensorFlow 集群的分布式模型
- 分布式執行策略
- TensorFlow 集群
- 定義集群規范
- 創建服務器實例
- 定義服務器和設備之間的參數和操作
- 定義并訓練圖以進行異步更新
- 定義并訓練圖以進行同步更新
- 總結
- 移動和嵌入式平臺上的 TensorFlow 模型
- 移動平臺上的 TensorFlow
- Android 應用中的 TF Mobile
- Android 上的 TF Mobile 演示
- iOS 應用中的 TF Mobile
- iOS 上的 TF Mobile 演示
- TensorFlow Lite
- Android 上的 TF Lite 演示
- iOS 上的 TF Lite 演示
- 總結
- R 中的 TensorFlow 和 Keras
- 在 R 中安裝 TensorFlow 和 Keras 軟件包
- R 中的 TF 核心 API
- R 中的 TF 估計器 API
- R 中的 Keras API
- R 中的 TensorBoard
- R 中的 tfruns 包
- 總結
- 調試 TensorFlow 模型
- 使用tf.Session.run()獲取張量值
- 使用tf.Print()打印張量值
- 用tf.Assert()斷言條件
- 使用 TensorFlow 調試器(tfdbg)進行調試
- 總結
- 張量處理單元