<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # 使用 Keras 中預訓練的 VGG16 進行圖像分類 加載模型是一個單行操作: ```py from keras.applications import VGG16 model=VGG16(weights='imagenet') ``` 我們可以使用這個模型來預測類的概率: ```py probs = model.predict(images_test) ``` 以下是此分類的結果: ![](https://img.kancloud.cn/d5/a9/d5a99434c27c21542f94d7f5aafd7fc0_315x306.png) ```py Probability 99.41% of [zebra] Probability 0.19% of [tiger cat] Probability 0.13% of [goose] Probability 0.09% of [tiger, Panthera tigris] Probability 0.02% of [mushroom] ``` --- ![](https://img.kancloud.cn/49/a6/49a68966aaa0ee71305961e2c5cada13_315x306.png) ```py Probability 87.50% of [horse cart, horse-cart] Probability 5.58% of [Arabian camel, dromedary, Camelus dromedarius] Probability 4.72% of [plow, plough] Probability 1.03% of [dogsled, dog sled, dog sleigh] Probability 0.31% of [wreck] ``` --- ![](https://img.kancloud.cn/a8/ff/a8ff8a087a8cb72538fce00f199d8497_315x306.png) ```py Probability 34.96% of [Siamese cat, Siamese] Probability 12.71% of [toy terrier] Probability 10.15% of [Boston bull, Boston terrier] Probability 6.53% of [Italian greyhound] Probability 6.01% of [Cardigan, Cardigan Welsh corgi] ``` --- ![](https://img.kancloud.cn/63/19/6319209b3678f238237547e18f9c9e65_315x306.png) ```py Probability 56.41% of [junco, snowbird] Probability 38.08% of [chickadee] Probability 1.93% of [bulbul] Probability 1.35% of [hummingbird] Probability 1.09% of [house finch, linnet, Carpodacus mexicanus] ``` --- ![](https://img.kancloud.cn/d5/38/d5388bb62b6dff6e317c441799363147_315x306.png) ```py Probability 54.19% of [brown bear, bruin, Ursus arctos] Probability 28.07% of [lion, king of beasts, Panthera leo] Probability 0.87% of [Norwich terrier] Probability 0.82% of [Lakeland terrier] Probability 0.73% of [wild boar, boar, Sus scrofa] ``` --- ![](https://img.kancloud.cn/0a/18/0a18ac3f3565f5993a6a2738935e8b20_315x306.png) ```py Probability 88.64% of [brown bear, bruin, Ursus arctos] Probability 7.22% of [American black bear, black bear, Ursus americanus, Euarctos americanus] Probability 4.13% of [sloth bear, Melursus ursinus, Ursus ursinus] Probability 0.00% of [badger] Probability 0.00% of [wombat] ``` --- ![](https://img.kancloud.cn/95/9a/959ab88e20b5c821831cb2ec8a433883_315x306.png) ```py Probability 38.70% of [jaguar, panther, Panthera onca, Felis onca] Probability 33.78% of [leopard, Panthera pardus] Probability 14.22% of [cheetah, chetah, Acinonyx jubatus] Probability 6.15% of [banded gecko] Probability 1.53% of [snow leopard, ounce, Panthera uncia] ``` --- ![](https://img.kancloud.cn/62/ff/62fffd6d8c14b02a0b8d7a6761bc4f6a_315x306.png) ```py Probability 12.54% of [shower curtain] Probability 2.82% of [binder, ring-binder] Probability 2.28% of [toilet tissue, toilet paper, bathroom tissue] Probability 2.12% of [accordion, piano accordion, squeeze box] Probability 2.05% of [bath towel] ``` 它無法識別綿羊,長頸鹿以及狗的圖像被裁剪出來的最后一張噪音圖像。現在,讓我們用我們的數據集再訓練 Keras 中的模型。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看