<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # TensorBoard 最小的例子 1. S 通過定義線性模型的變量和占位符來實現: ```py # Assume Linear Model y = w * x + b # Define model parameters w = tf.Variable([.3], name='w',dtype=tf.float32) b = tf.Variable([-.3], name='b', dtype=tf.float32) # Define model input and output x = tf.placeholder(name='x',dtype=tf.float32) y = w * x + b ``` 1. 初始化會話,并在此會話的上下文中,執行以下步驟: * 初始化全局變量 * 創建`tf.summary.FileWriter`將使用默認圖中的事件在`tflogs`文件夾中創建輸出 * 獲取節點`y`的值,有效地執行我們的線性模型 ```py with tf.Session() as tfs: tfs.run(tf.global_variables_initializer()) writer=tf.summary.FileWriter('tflogs',tfs.graph) print('run(y,{x:3}) : ', tfs.run(y,feed_dict={x:3})) ``` 1. 我們看到以下輸出: ```py run(y,{x:3}) : [ 0.60000002] ``` 當程序執行時,日志將收集在`tflogs`文件夾中,TensorBoard 將使用該文件夾進行可視化。打開命令行界面,導航到運行`ch-01_TensorFlow_101`筆記本的文件夾,然后執行以下命令: ```py tensorboard --logdir='tflogs' ``` 您會看到類似于此的輸出: ```py Starting TensorBoard b'47' at http://0.0.0.0:6006 ``` 打開瀏覽器并導航到 [http://0.0.0.0:6006](http://0.0.0.0:6006) 。看到 TensorBoard 儀表板后,不要擔心顯示任何錯誤或警告,只需單擊頂部的 GRAPHS 選項卡即可。您將看到以下屏幕: ![](https://img.kancloud.cn/dc/0d/dc0db35d0a546ebc4fb671d4e8e36836_1078x943.png)TensorBoard console 您可以看到 TensorBoard 將我們的第一個簡單模型可視化為計算圖: ![](https://img.kancloud.cn/5c/f9/5cf9f46dc5dea02de6006bbb11a9648d_548x238.png)Computation graph in TensorBoard 現在讓我們試著了解 TensorBoard 的詳細工作原理。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看