<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # `tf.Assert()` 調試 TensorFlow 模型的另一種方法是插入條件斷言。`tf.Assert()`函數需要一個條件,如果條件為假,則打印給定張量的列表并拋出 `tf.errors.InvalidArgumentError` 。 1. `tf.Assert()` 函數具有以下特征: ```py tf.Assert( condition, data, summarize=None, name=None ) ``` 1. 斷言操作不會像`tf.Print()`函數那樣落入圖的路徑中。為了確保`tf.Assert()`操作得到執行,我們需要將它添加到依賴項中。例如,讓我們定義一個斷言來檢查所有輸入是否為正: ```py assert_op = tf.Assert(tf.reduce_all(tf.greater_equal(x,0)),[x]) ``` 1. 在定義模型時將`assert_op`添加到依賴項,如下所示: ```py with tf.control_dependencies([assert_op]): # x is input layer layer = x # add hidden layers for i in range(num_layers): layer = tf.nn.relu(tf.matmul(layer, w[i]) + b[i]) # add output layer layer = tf.matmul(layer, w[num_layers]) + b[num_layers] ``` 1. 為了測試這段代碼,我們在第 5 周期之后引入了一個雜質,如下: ```py if epoch > 5: X_batch = np.copy(X_batch) X_batch[0,0]=-2 ``` 1. 代碼運行正常五個周期,然后拋出錯誤: ```py epoch: 0000 loss = 6.975991 epoch: 0001 loss = 2.246228 epoch: 0002 loss = 1.924571 epoch: 0003 loss = 1.745509 epoch: 0004 loss = 1.616791 epoch: 0005 loss = 1.520804 ----------------------------------------------------------------- InvalidArgumentError Traceback (most recent call last) ... InvalidArgumentError: assertion failed: [[-2 0 0]...] ... ``` 除了`tf.Assert()`函數,它可以采用任何有效的條件表達式,TensorFlow 提供以下斷言操作,檢查特定條件并具有簡單的語法: * `assert_equal` * `assert_greater` * `assert_greater_equal` * `assert_integer` * `assert_less` * `assert_less_equal` * `assert_negative` * `assert_none_equal` * `assert_non_negative` * `assert_non_positive` * `assert_positive` * `assert_proper_iterable` * `assert_rank` * `assert_rank_at_least` * `assert_rank_in` * `assert_same_float_dtype` * `assert_scalar` * `assert_type` * `assert_variables_initialized` 作為示例,前面提到的示例斷言操作也可以寫成如下: ```py assert_op = tf.assert_greater_equal(x,0) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看