[TOC]
# HTTP/2
HTTP/2 相比于 HTTP/1,可以說是大幅度提高了網頁的性能。
在 HTTP/1 中,為了性能考慮,我們會引入雪碧圖、將小圖內聯、使用多個域名等等的方式。這一切都是因為瀏覽器限制了同一個域名下的請求數量(Chrome 下一般是限制六個連接),當頁面中需要請求很多資源的時候,隊頭阻塞(Head of line blocking)會導致在達到最大請求數量時,剩余的資源需要等待其他資源請求完成后才能發起請求。
在 HTTP/2 中引入了多路復用的技術,這個技術可以只通過一個 TCP 連接就可以傳輸所有的請求數據。多路復用很好的解決了瀏覽器限制同一個域名下的請求數量的問題,同時也接更容易實現全速傳輸,畢竟新開一個 TCP 連接都需要慢慢提升傳輸速度。
大家可以通過[該鏈接](https://link.juejin.im/?target=https%3A%2F%2Fhttp2.akamai.com%2Fdemo)感受下 HTTP/2 比 HTTP/1 到底快了多少。

在 HTTP/1 中,因為隊頭阻塞的原因,你會發現發送請求是長這樣的

在 HTTP/2 中,因為可以復用同一個 TCP 連接,你會發現發送請求是長這樣的

## 二進制傳輸
HTTP/2 中所有加強性能的核心點在于此。在之前的 HTTP 版本中,我們是通過文本的方式傳輸數據。在 HTTP/2 中引入了新的編碼機制,所有傳輸的數據都會被分割,并采用二進制格式編碼。

## 多路復用
在 HTTP/2 中,有兩個非常重要的概念,分別是幀(frame)和流(stream)。
幀代表著最小的數據單位,每個幀會標識出該幀屬于哪個流,流也就是多個幀組成的數據流。
多路復用,就是在一個 TCP 連接中可以存在多條流。換句話說,也就是可以發送多個請求,對端可以通過幀中的標識知道屬于哪個請求。通過這個技術,可以避免 HTTP 舊版本中的隊頭阻塞問題,極大的提高傳輸性能。

## Header 壓縮
在 HTTP/1 中,我們使用文本的形式傳輸 header,在 header 攜帶 cookie 的情況下,可能每次都需要重復傳輸幾百到幾千的字節。
在 HTTP /2 中,使用了 HPACK 壓縮格式對傳輸的 header 進行編碼,減少了 header 的大小。并在兩端維護了索引表,用于記錄出現過的 header ,后面在傳輸過程中就可以傳輸已經記錄過的 header 的鍵名,對端收到數據后就可以通過鍵名找到對應的值。
## 服務端 Push
在 HTTP/2 中,服務端可以在客戶端某個請求后,主動推送其他資源。
可以想象以下情況,某些資源客戶端是一定會請求的,這時就可以采取服務端 push 的技術,提前給客戶端推送必要的資源,這樣就可以相對減少一點延遲時間。當然在瀏覽器兼容的情況下你也可以使用 prefetch 。
# HTTP/3
雖然 HTTP/2 解決了很多之前舊版本的問題,但是它還是存在一個巨大的問題,雖然這個問題并不是它本身造成的,而是底層支撐的 TCP 協議的問題。
因為 HTTP/2 使用了多路復用,一般來說同一域名下只需要使用一個 TCP 連接。當這個連接中出現了丟包的情況,那就會導致 HTTP/2 的表現情況反倒不如 HTTP/1 了。
因為在出現丟包的情況下,整個 TCP 都要開始等待重傳,也就導致了后面的所有數據都被阻塞了。但是對于 HTTP/1 來說,可以開啟多個 TCP 連接,出現這種情況反到只會影響其中一個連接,剩余的 TCP 連接還可以正常傳輸數據。
那么可能就會有人考慮到去修改 TCP 協議,其實這已經是一件不可能完成的任務了。因為 TCP 存在的時間實在太長,已經充斥在各種設備中,并且這個協議是由操作系統實現的,更新起來不大現實。
基于這個原因,Google 就更起爐灶搞了一個基于 UDP 協議的 QUIC 協議,并且使用在了 HTTP/3 上,當然 HTTP/3 之前名為 HTTP-over-QUIC,從這個名字中我們也可以發現,HTTP/3 最大的改造就是使用了 QUIC,接下來我們就來學習關于這個協議的內容。
## QUIC
之前我們學習過 UDP 協議的內容,知道這個協議雖然效率很高,但是并不是那么的可靠。QUIC 雖然基于 UDP,但是在原本的基礎上新增了很多功能,比如多路復用、0-RTT、使用 TLS1.3 加密、流量控制、有序交付、重傳等等功能。這里我們就挑選幾個重要的功能學習下這個協議的內容。
**多路復用**
雖然 HTTP/2 支持了多路復用,但是 TCP 協議終究是沒有這個功能的。QUIC 原生就實現了這個功能,并且傳輸的單個數據流可以保證有序交付且不會影響其他的數據流,這樣的技術就解決了之前 TCP 存在的問題。
并且 QUIC 在移動端的表現也會比 TCP 好。因為 TCP 是基于 IP 和端口去識別連接的,這種方式在多變的移動端網絡環境下是很脆弱的。但是 QUIC 是通過 ID 的方式去識別一個連接,不管你網絡環境如何變化,只要 ID 不變,就能迅速重連上。
**0-RTT**
通過使用類似 TCP 快速打開的技術,緩存當前會話的上下文,在下次恢復會話的時候,只需要將之前的緩存傳遞給服務端驗證通過就可以進行傳輸了。
**糾錯機制**
假如說這次我要發送三個包,那么協議會算出這三個包的異或值并單獨發出一個校驗包,也就是總共發出了四個包。
當出現其中的非校驗包丟包的情況時,可以通過另外三個包計算出丟失的數據包的內容。
當然這種技術只能使用在丟失一個包的情況下,如果出現丟失多個包就不能使用糾錯機制了,只能使用重傳的方式了。
# 參考資料
[前端面試之道 - 掘金小冊](https://juejin.im/book/5bdc715fe51d454e755f75ef/section/5bdc72b151882516f039fce3)
- 第一部分 HTML
- meta
- meta標簽
- HTML5
- 2.1 語義
- 2.2 通信
- 2.3 離線&存儲
- 2.4 多媒體
- 2.5 3D,圖像&效果
- 2.6 性能&集成
- 2.7 設備訪問
- SEO
- Canvas
- 壓縮圖片
- 制作圓角矩形
- 全局屬性
- 第二部分 CSS
- CSS原理
- 層疊上下文(stacking context)
- 外邊距合并
- 塊狀格式化上下文(BFC)
- 盒模型
- important
- 樣式繼承
- 層疊
- 屬性值處理流程
- 分辨率
- 視口
- CSS API
- grid(未完成)
- flex
- 選擇器
- 3D
- Matrix
- AT規則
- line-height 和 vertical-align
- CSS技術
- 居中
- 響應式布局
- 兼容性
- 移動端適配方案
- CSS應用
- CSS Modules(未完成)
- 分層
- 面向對象CSS(未完成)
- 布局
- 三列布局
- 單列等寬,其他多列自適應均勻
- 多列等高
- 圣杯布局
- 雙飛翼布局
- 瀑布流
- 1px問題
- 適配iPhoneX
- 橫屏適配
- 圖片模糊問題
- stylelint
- 第三部分 JavaScript
- JavaScript原理
- 內存空間
- 作用域
- 執行上下文棧
- 變量對象
- 作用域鏈
- this
- 類型轉換
- 閉包(未完成)
- 原型、面向對象
- class和extend
- 繼承
- new
- DOM
- Event Loop
- 垃圾回收機制
- 內存泄漏
- 數值存儲
- 連等賦值
- 基本類型
- 堆棧溢出
- JavaScriptAPI
- document.referrer
- Promise(未完成)
- Object.create
- 遍歷對象屬性
- 寬度、高度
- performance
- 位運算
- tostring( ) 與 valueOf( )方法
- JavaScript技術
- 錯誤
- 異常處理
- 存儲
- Cookie與Session
- ES6(未完成)
- Babel轉碼
- let和const命令
- 變量的解構賦值
- 字符串的擴展
- 正則的擴展
- 數值的擴展
- 數組的擴展
- 函數的擴展
- 對象的擴展
- Symbol
- Set 和 Map 數據結構
- proxy
- Reflect
- module
- AJAX
- ES5
- 嚴格模式
- JSON
- 數組方法
- 對象方法
- 函數方法
- 服務端推送(未完成)
- JavaScript應用
- 復雜判斷
- 3D 全景圖
- 重載
- 上傳(未完成)
- 上傳方式
- 文件格式
- 渲染大量數據
- 圖片裁剪
- 斐波那契數列
- 編碼
- 數組去重
- 淺拷貝、深拷貝
- instanceof
- 模擬 new
- 防抖
- 節流
- 數組扁平化
- sleep函數
- 模擬bind
- 柯里化
- 零碎知識點
- 第四部分 進階
- 計算機原理
- 數據結構(未完成)
- 算法(未完成)
- 排序算法
- 冒泡排序
- 選擇排序
- 插入排序
- 快速排序
- 搜索算法
- 動態規劃
- 二叉樹
- 瀏覽器
- 瀏覽器結構
- 瀏覽器工作原理
- HTML解析
- CSS解析
- 渲染樹構建
- 布局(Layout)
- 渲染
- 瀏覽器輸入 URL 后發生了什么
- 跨域
- 緩存機制
- reflow(回流)和repaint(重繪)
- 渲染層合并
- 編譯(未完成)
- Babel
- 設計模式(未完成)
- 函數式編程(未完成)
- 正則表達式(未完成)
- 性能
- 性能分析
- 性能指標
- 首屏加載
- 優化
- 瀏覽器層面
- HTTP層面
- 代碼層面
- 構建層面
- 移動端首屏優化
- 服務器層面
- bigpipe
- 構建工具
- Gulp
- webpack
- Webpack概念
- Webpack工具
- Webpack優化
- Webpack原理
- 實現loader
- 實現plugin
- tapable
- Webpack打包后代碼
- rollup.js
- parcel
- 模塊化
- ESM
- 安全
- XSS
- CSRF
- 點擊劫持
- 中間人攻擊
- 密碼存儲
- 測試(未完成)
- 單元測試
- E2E測試
- 框架測試
- 樣式回歸測試
- 異步測試
- 自動化測試
- PWA
- PWA官網
- web app manifest
- service worker
- app install banners
- 調試PWA
- PWA教程
- 框架
- MVVM原理
- Vue
- Vue 餓了么整理
- 樣式
- 技巧
- Vue音樂播放器
- Vue源碼
- Virtual Dom
- computed原理
- 數組綁定原理
- 雙向綁定
- nextTick
- keep-alive
- 導航守衛
- 組件通信
- React
- Diff 算法
- Fiber 原理
- batchUpdate
- React 生命周期
- Redux
- 動畫(未完成)
- 異常監控、收集(未完成)
- 數據采集
- Sentry
- 貝塞爾曲線
- 視頻
- 服務端渲染
- 服務端渲染的利與弊
- Vue SSR
- React SSR
- 客戶端
- 離線包
- 第五部分 網絡
- 五層協議
- TCP
- UDP
- HTTP
- 方法
- 首部
- 狀態碼
- 持久連接
- TLS
- content-type
- Redirect
- CSP
- 請求流程
- HTTP/2 及 HTTP/3
- CDN
- DNS
- HTTPDNS
- 第六部分 服務端
- Linux
- Linux命令
- 權限
- XAMPP
- Node.js
- 安裝
- Node模塊化
- 設置環境變量
- Node的event loop
- 進程
- 全局對象
- 異步IO與事件驅動
- 文件系統
- Node錯誤處理
- koa
- koa-compose
- koa-router
- Nginx
- Nginx配置文件
- 代理服務
- 負載均衡
- 獲取用戶IP
- 解決跨域
- 適配PC與移動環境
- 簡單的訪問限制
- 頁面內容修改
- 圖片處理
- 合并請求
- PM2
- MongoDB
- MySQL
- 常用MySql命令
- 自動化(未完成)
- docker
- 創建CLI
- 持續集成
- 持續交付
- 持續部署
- Jenkins
- 部署與發布
- 遠程登錄服務器
- 增強服務器安全等級
- 搭建 Nodejs 生產環境
- 配置 Nginx 實現反向代理
- 管理域名解析
- 配置 PM2 一鍵部署
- 發布上線
- 部署HTTPS
- Node 應用
- 爬蟲(未完成)
- 例子
- 反爬蟲
- 中間件
- body-parser
- connect-redis
- cookie-parser
- cors
- csurf
- express-session
- helmet
- ioredis
- log4js(未完成)
- uuid
- errorhandler
- nodeclub源碼
- app.js
- config.js
- 消息隊列
- RPC
- 性能優化
- 第七部分 總結
- Web服務器
- 目錄結構
- 依賴
- 功能
- 代碼片段
- 整理
- 知識清單、博客
- 項目、組件、庫
- Node代碼
- 面試必考
- 91算法
- 第八部分 工作代碼總結
- 樣式代碼
- 框架代碼
- 組件代碼
- 功能代碼
- 通用代碼