# 14.1 數值積分計劃
> 原文: [http://math.mit.edu/~djk/calculus_beginners/chapter14/section01.html](http://math.mit.edu/~djk/calculus_beginners/chapter14/section01.html)
**那我們該怎么做呢?**
這是個主意。我們創建了一個電子表格,在一列中,我們從積分的下限開始,并將每個參數的值增加一些。這可以通過一個或兩個條目進行排列并向下復制。您可以將其稱為參數列。
在下一列中,我們評估每個參數的被積函數。這可以通過在第一個條目進行評估并向下復制來完成。這可以稱為您的被積函數的值列。
在最后一列中,我們將前一列中的條目相加,每個條目乘以。這又需要一次輸入和復制。這本質上就是它。這是整數列。它的條目是參數列中從起始點到下一個條目的積分,使用“左手規則”。
**再來一次?**
在詳細闡述這一點之前,我們將離題討論用于數值積分的“規則”。
- 第 0 章:為何學習微積分?
- 0.1 你應該知道什么
- 0.2 什么是微積分?我們為什么要研究它?
- 第 1 章:數字
- 1.1 什么是數字?有理數
- 1.2 小數和實數
- 1.3 復數
- 復數運算
- 1.4 可數集(消遣)
- 第 2 章:使用電子表格
- 2.1 什么是電子表格?
- 2.2 斐波納契數
- 2.3 帕斯卡的三角形
- 2.4 與電子表格集成
- 第 3 章:線性函數
- 3.1 什么是函數?
- 3.2 線性函數
- 3.3 線性
- 第四章:函數的二次型和導數
- 4.1 更復雜的函數
- 4.2 二次函數的斜率
- 第 5 章:有理函數和導數的計算
- 5.1 有理函數的導數
- 第 6 章:指數函數,替換和鏈規則
- 6.1 最有用函數的導數
- 第 7 章:三角函數及其導數
- 7.1 二維數學
- 7.2 三角學和導數以及加法定理
- 第 8 章:反函數及其導函數
- 8.1 反函數
- 8.2 微分反函數
- 8.3 更多規則
- 第 9 章:數值微分和不可微函數
- 9.1 數值微分
- 9.2 繪制導數圖
- 9.3 不可微函數
- 第 10 章:微分的回顧
- 10.1 復習
- 第 11 章:微分在求解方程中的應用
- 11.1 求解方程
- 第 12 章:反導數
- 12.1 反導數
- 第 13 章:曲線下面積;定積分
- 13.1 區域:定義,名稱和符號
- 13.2 微積分和確定區域的基本定理
- 13.3 積分的訣竅
- 第 14 章:數值積分
- 14.1 數值積分計劃
- 14.2 積分的“規則”
- 14.3 為什么這些規則有效?
- 第 15 章:平行數字的面積和體積;行列式
- 15.1 有符號面積和體積
- 15.2 表示平行邊的圖形
- 15.3 行列式的屬性
- 15.4 求解行列式
- 15.5 用于求解電子表格中的行列式的愛麗絲夢游仙境方法
- 第 16 章一些純數學
- 16.1 極限和點集拓撲簡介
- 16.2 緊集
- 16.3 雜注
- 16.4 Lebesgue 積分
- 第 17 章:物理的建模應用
- 17.1 垂直運動建模
- 17.2 彈簧建模(諧波振蕩器)
- 17.3 受迫振蕩
- 17.4 簡單電路
- 第 18 章捕食者獵物模型
- 18.1 捕食者獵物模型
- 第 19 章:求解微分方程
- 19.1 計劃
- 19.2 一階微分方程
- 19.3 二階微分方程
- 19.4 行星運動