<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # 附錄3 三維空間剛體運動 ## 四元數 $$\quad$$旋轉矩陣用9個量來描述3自由度的旋轉,具有冗余性;歐拉角雖然用3個量來描述3自由度的旋轉,但是具有萬向鎖的問題,因此我們選擇用**四元數,**(ROS當中描述轉向的都是采用的四元數)。一個四元數擁有一個實部和三個虛部組成。 $$\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad q=w+xi=yj+zk$$ $$\quad$$三個虛部滿足以下關系 $$\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \begin{cases} i^2=j^2=k^2=-1 \\ ij=k,ji=-k\\ jk=i,kj=-i\\ ki=j,jk=-j\\ \end{cases} $$ $$\quad$$寫成矩陣的樣子就是$$q=\begin{bmatrix} w,x,y,z\end{bmatrix}^T$$,其中$$\begin{vmatrix} q\end{vmatrix}^2=w^2=x^2+y^2+z^2=1$$,從歐拉角到四元數的公式: $$\qquad \qquad q=\begin{bmatrix} w\\x\\y\\z \end{bmatrix}=\begin{bmatrix} cos(roll/2)cos(pitch/2)cos(yaw/2)+sin(roll/2)sin(pitch/2)sin(yaw/2)\\sin(roll/2)cos(pitch/2)cos(yaw/2)-cos(roll/2)sin(pitch/2)sin(yaw/2)\\cos(roll/2)sin(pitch/2)cos(yaw/2)+sin(roll/2)cos(pitch/2)sin(yaw/2)\\cos(roll/2)cos(pitch/2)sin(yaw/2)-sin(roll/2)sin(pitch/2)cos(yaw/2) \end{bmatrix}$$ $$\quad$$從四元數轉化到歐拉角公式 $$\qquad \qquad \qquad \qquad \qquad \qquad \begin{bmatrix} roll\\pitch\\yaw \end{bmatrix}=\begin{bmatrix} atan2(2(wx+yz),1-2(x^2+y^2))\\ arcsin(2(wy-zx))\\atan2(2(wz+xy),1-2(y^2+z^2)) \end{bmatrix}$$
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看