<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                # 9.3 Karto ## 9.3.1 Karto SLAM計算圖 Karto SLAM和Gmapping SLAM在工作方式上非常類似,如下圖所示 ![slam_gmapping](https://img.kancloud.cn/95/16/95168bde043b0b3f5e796819b48396df_1280x592.png) 輸入的Topic同樣是`/tf`和`/scan`,其中`/tf`里要連通`odom_frame`與`base_frame`,還有`laser_frame`。這里和Gmapping完全一樣。 唯一不同的地方是輸出,slam_karto的輸出少相比slam_gmapping了一個位姿估計的分散程度. ## 9.3.2 服務 與Gmapping相同,提供`/dynamic_map`服務 ## 9.3.3 參數 這里以`ROS-Academy-for-Beginners`中的`karto_slam`為例,選取了它的參數文件`slam_sim_demo/param/karto_params.yaml`,關鍵位置做了注釋: ``` # General Parameters use_scan_matching: true use_scan_barycenter: true minimum_travel_distance: 0.2 minimum_travel_heading: 0.174 #in radians scan_buffer_size: 70 scan_buffer_maximum_scan_distance: 20.0 link_match_minimum_response_fine: 0.8 link_scan_maximum_distance: 10.0 loop_search_maximum_distance: 4.0 do_loop_closing: true loop_match_minimum_chain_size: 10 loop_match_maximum_variance_coarse: 0.4 # gets squared later loop_match_minimum_response_coarse: 0.8 loop_match_minimum_response_fine: 0.8 # Correlation Parameters - Correlation Parameters correlation_search_space_dimension: 0.3 correlation_search_space_resolution: 0.01 correlation_search_space_smear_deviation: 0.03 # Correlation Parameters - Loop Closure Parameters loop_search_space_dimension: 8.0 loop_search_space_resolution: 0.05 loop_search_space_smear_deviation: 0.03 # Scan Matcher Parameters distance_variance_penalty: 0.3 # gets squared later angle_variance_penalty: 0.349 # in degrees (gets converted to radians then squared) fine_search_angle_offset: 0.00349 # in degrees (gets converted to radians) coarse_search_angle_offset: 0.349 # in degrees (gets converted to radians) coarse_angle_resolution: 0.0349 # in degrees (gets converted to radians) minimum_angle_penalty: 0.9 minimum_distance_penalty: 0.5 use_response_expansion: false ``` ### 演示截圖 ![](https://img.kancloud.cn/b9/0a/b90a18a6490ab13df2334b637d21c6b4_926x894.png)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看