## 12.7 超出 2 x 2 表的分類分析
分類分析也可以應用于應急表,其中每個變量有兩個以上的類別。
例如,讓我們看一下 nhanes 的數據,比較變量 _depressed_,它表示“參與者感到沮喪、沮喪或絕望的自我報告天數”。此變量編碼為`None`、`Several`或`Most`。讓我們測試這個變量是否與 _sleeptrouble_ 變量相關,這個變量報告個人是否向醫生報告了睡眠問題。
```r
# summarize depression as a function of sleep trouble
depressedSleepTrouble <-
NHANES_adult %>%
drop_na(SleepTrouble, Depressed) %>%
count(SleepTrouble, Depressed) %>%
arrange(SleepTrouble, Depressed)
depressedSleepTroubleTable <-
depressedSleepTrouble %>%
spread(SleepTrouble, n) %>%
rename(
NoSleepTrouble = No,
YesSleepTrouble = Yes
)
pander(depressedSleepTroubleTable)
```
<colgroup><col style="width: 16%"> <col style="width: 23%"> <col style="width: 23%"></colgroup>
| 沮喪的 | 無阻力 | 是的,可重復 |
| --- | --- | --- |
| 無 | 2614 個 | 676 個 |
| 幾個 | 418 個 | 249 個 |
| 大多數 | 138 個 | 145 個 |
簡單地看一下這些數據,我們就可以知道這兩個變量之間可能存在某種關系;特別是,盡管睡眠問題患者的總數比沒有睡眠問題的患者要少很多,但對于大多數時間都處于抑郁狀態的患者來說,睡眠問題患者的數量更大。比沒有的要水。我們可以直接使用卡方檢驗對其進行量化;如果我們的數據框只包含兩個變量,那么我們可以簡單地將數據框作為參數提供給`chisq.test()`函數:
```r
# need to remove the column with the label names
depressedSleepTroubleTable <-
depressedSleepTroubleTable %>%
dplyr::select(-Depressed)
depressedSleepChisq <- chisq.test(depressedSleepTroubleTable)
depressedSleepChisq
```
```r
##
## Pearson's Chi-squared test
##
## data: depressedSleepTroubleTable
## X-squared = 200, df = 2, p-value <2e-16
```
這項測試表明,抑郁和睡眠問題之間有很強的關系。我們還可以計算貝葉斯因子來量化有利于替代假設的證據的強度:
```r
# compute bayes factor, using a joint multinomial sampling plan
bf <-
contingencyTableBF(
as.matrix(depressedSleepTroubleTable),
sampleType = "jointMulti"
)
bf
```
```r
## Bayes factor analysis
## --------------
## [1] Non-indep. (a=1) : 1.8e+35 ±0%
##
## Against denominator:
## Null, independence, a = 1
## ---
## Bayes factor type: BFcontingencyTable, joint multinomial
```
在這里,我們看到貝葉斯系數非常大,這表明支持抑郁和睡眠問題之間關系的證據非常有力。
- 前言
- 0.1 本書為什么存在?
- 0.2 你不是統計學家-我們為什么要聽你的?
- 0.3 為什么是 R?
- 0.4 數據的黃金時代
- 0.5 開源書籍
- 0.6 確認
- 1 引言
- 1.1 什么是統計思維?
- 1.2 統計數據能為我們做什么?
- 1.3 統計學的基本概念
- 1.4 因果關系與統計
- 1.5 閱讀建議
- 2 處理數據
- 2.1 什么是數據?
- 2.2 測量尺度
- 2.3 什么是良好的測量?
- 2.4 閱讀建議
- 3 概率
- 3.1 什么是概率?
- 3.2 我們如何確定概率?
- 3.3 概率分布
- 3.4 條件概率
- 3.5 根據數據計算條件概率
- 3.6 獨立性
- 3.7 逆轉條件概率:貝葉斯規則
- 3.8 數據學習
- 3.9 優勢比
- 3.10 概率是什么意思?
- 3.11 閱讀建議
- 4 匯總數據
- 4.1 為什么要總結數據?
- 4.2 使用表格匯總數據
- 4.3 分布的理想化表示
- 4.4 閱讀建議
- 5 將模型擬合到數據
- 5.1 什么是模型?
- 5.2 統計建模:示例
- 5.3 什么使模型“良好”?
- 5.4 模型是否太好?
- 5.5 最簡單的模型:平均值
- 5.6 模式
- 5.7 變異性:平均值與數據的擬合程度如何?
- 5.8 使用模擬了解統計數據
- 5.9 Z 分數
- 6 數據可視化
- 6.1 數據可視化如何拯救生命
- 6.2 繪圖解剖
- 6.3 使用 ggplot 在 R 中繪制
- 6.4 良好可視化原則
- 6.5 最大化數據/墨水比
- 6.6 避免圖表垃圾
- 6.7 避免數據失真
- 6.8 謊言因素
- 6.9 記住人的局限性
- 6.10 其他因素的修正
- 6.11 建議閱讀和視頻
- 7 取樣
- 7.1 我們如何取樣?
- 7.2 采樣誤差
- 7.3 平均值的標準誤差
- 7.4 中心極限定理
- 7.5 置信區間
- 7.6 閱讀建議
- 8 重新采樣和模擬
- 8.1 蒙特卡羅模擬
- 8.2 統計的隨機性
- 8.3 生成隨機數
- 8.4 使用蒙特卡羅模擬
- 8.5 使用模擬統計:引導程序
- 8.6 閱讀建議
- 9 假設檢驗
- 9.1 無效假設統計檢驗(NHST)
- 9.2 無效假設統計檢驗:一個例子
- 9.3 無效假設檢驗過程
- 9.4 現代環境下的 NHST:多重測試
- 9.5 閱讀建議
- 10 置信區間、效應大小和統計功率
- 10.1 置信區間
- 10.2 效果大小
- 10.3 統計能力
- 10.4 閱讀建議
- 11 貝葉斯統計
- 11.1 生成模型
- 11.2 貝葉斯定理與逆推理
- 11.3 進行貝葉斯估計
- 11.4 估計后驗分布
- 11.5 選擇優先權
- 11.6 貝葉斯假設檢驗
- 11.7 閱讀建議
- 12 分類關系建模
- 12.1 示例:糖果顏色
- 12.2 皮爾遜卡方檢驗
- 12.3 應急表及雙向試驗
- 12.4 標準化殘差
- 12.5 優勢比
- 12.6 貝葉斯系數
- 12.7 超出 2 x 2 表的分類分析
- 12.8 注意辛普森悖論
- 13 建模持續關系
- 13.1 一個例子:仇恨犯罪和收入不平等
- 13.2 收入不平等是否與仇恨犯罪有關?
- 13.3 協方差和相關性
- 13.4 相關性和因果關系
- 13.5 閱讀建議
- 14 一般線性模型
- 14.1 線性回歸
- 14.2 安裝更復雜的模型
- 14.3 變量之間的相互作用
- 14.4“預測”的真正含義是什么?
- 14.5 閱讀建議
- 15 比較方法
- 15.1 學生 T 考試
- 15.2 t 檢驗作為線性模型
- 15.3 平均差的貝葉斯因子
- 15.4 配對 t 檢驗
- 15.5 比較兩種以上的方法
- 16 統計建模過程:一個實例
- 16.1 統計建模過程
- 17 做重復性研究
- 17.1 我們認為科學應該如何運作
- 17.2 科學(有時)是如何工作的
- 17.3 科學中的再現性危機
- 17.4 有問題的研究實踐
- 17.5 進行重復性研究
- 17.6 進行重復性數據分析
- 17.7 結論:提高科學水平
- 17.8 閱讀建議
- References