# 零、前言
本書旨在為您提供實用的機器學習動手入門,其目的是使任何人都可以在該領域開始工作。 我們將主要關注深度學習方法以及如何將其用于解決重要的計算機視覺問題,但是此處獲得的知識可以轉移到許多不同的領域。 在此過程中,讀者還將掌握如何使用流行的深度學習庫 TensorFlow。
# 這本書是給誰的
任何對實用的機器學習指南(特別是深度學習和計算機視覺)感興趣的人都將從閱讀本書中受益。 此外,以下人員也將受益:
* 機器學習工程師
* 數據科學家
* 對學習深度學習和計算機視覺領域感興趣的開發人員
* 學習機器學習的學生
# 本書涵蓋的內容
第 1 章,“Tensorflow 的設置和簡介”,涵蓋了 TensorFlow 的設置和安裝,以及編寫用于機器學習的簡單 Tensorflow 模型。
第 2 章,“深度學習和卷積神經網絡”向您介紹了機器學習,人工智能以及人工神經網絡以及如何對其進行訓練。 它還涵蓋了 CNN 以及如何使用 TensorFlow 訓練自己的 CNN。
第 3 章,“Tensorflow 中的圖像分類”,討論了如何構建 CNN 模型以及如何訓練它們以對 CIFAR10 數據集進行分類。 它還探討了通過談論初始化和正則化的不同方法來幫助提高我們訓練后的模型的質量的方法。
第 4 章,“對象檢測和分割”教授對象定位,檢測和分割的基礎知識以及與這些主題相關的最著名的算法。
第 5 章,“VGG,接收模塊,殘差和 MobileNets”向您介紹了不同的卷積神經網絡設計,例如 VGGNet,GoggLeNet 和 MobileNet。
第 6 章,“自編碼器,變分自編碼器和生成對抗網絡”,向您介紹生成模型,生成對抗網絡和不同類型的編碼器。
第 7 章,“遷移學習”,涵蓋了遷移學習的用法并在我們自己的任務中實現。
第 8 章,“機器學習最佳實踐和故障排除”,向我們介紹了如何準備并將數據集拆分為子集并執行有意義的測試。 本章還討論了過擬合和過擬合以及解決這些問題的最佳實踐。
第 9 章,“大規模訓練”,教您如何在多個 GPU 和機器上訓練 TensorFlow 模型。 它還涵蓋了存儲數據并將其輸入模型的最佳實踐。
# 充分利用這本書
為了充分利用本書,讀者應該對 Python 編程語言以及如何安裝一些必需的軟件包有所了解。 本書將以簡單的語言介紹所有其他內容。 安裝說明將在本書和存儲庫中給出。
# 使用約定
本書中使用了許多文本約定。
`CodeInText`:指示文本,數據庫表名稱,文件夾名稱,文件名,文件擴展名,路徑名,虛擬 URL,用戶輸入和 Twitter 句柄中的代碼字。 這是一個示例:“將下載的`WebStorm-10*.dmg`磁盤映像文件安裝為系統中的另一個磁盤。”
代碼塊設置如下:
```py
import tensorflow as tf
# XOR dataset
XOR_X = [[0, 0], [0, 1], [1, 0], [1, 1]]
XOR_Y = [[0], [1], [1], [0]]
```
當我們希望引起您對代碼塊特定部分的注意時,相關的行或項目以粗體顯示:
```py
import tensorflow as tf
# XOR dataset
XOR_X = [[0, 0], [0, 1], [1, 0], [1, 1]]
XOR_Y = [[0], [1], [1], [0]]
```
任何命令行輸入或輸出的編寫方式如下:
```py
$ pip install numpy
$ pip install scipy
```
**粗體**:表示新術語,重要單詞或您在屏幕上看到的單詞。 例如,菜單或對話框中的單詞會出現在這樣的文本中。 這是一個示例:“從管理面板中選擇系統信息。”
警告或重要提示如下所示。
提示和技巧如下所示。
- TensorFlow 1.x 深度學習秘籍
- 零、前言
- 一、TensorFlow 簡介
- 二、回歸
- 三、神經網絡:感知器
- 四、卷積神經網絡
- 五、高級卷積神經網絡
- 六、循環神經網絡
- 七、無監督學習
- 八、自編碼器
- 九、強化學習
- 十、移動計算
- 十一、生成模型和 CapsNet
- 十二、分布式 TensorFlow 和云深度學習
- 十三、AutoML 和學習如何學習(元學習)
- 十四、TensorFlow 處理單元
- 使用 TensorFlow 構建機器學習項目中文版
- 一、探索和轉換數據
- 二、聚類
- 三、線性回歸
- 四、邏輯回歸
- 五、簡單的前饋神經網絡
- 六、卷積神經網絡
- 七、循環神經網絡和 LSTM
- 八、深度神經網絡
- 九、大規模運行模型 -- GPU 和服務
- 十、庫安裝和其他提示
- TensorFlow 深度學習中文第二版
- 一、人工神經網絡
- 二、TensorFlow v1.6 的新功能是什么?
- 三、實現前饋神經網絡
- 四、CNN 實戰
- 五、使用 TensorFlow 實現自編碼器
- 六、RNN 和梯度消失或爆炸問題
- 七、TensorFlow GPU 配置
- 八、TFLearn
- 九、使用協同過濾的電影推薦
- 十、OpenAI Gym
- TensorFlow 深度學習實戰指南中文版
- 一、入門
- 二、深度神經網絡
- 三、卷積神經網絡
- 四、循環神經網絡介紹
- 五、總結
- 精通 TensorFlow 1.x
- 一、TensorFlow 101
- 二、TensorFlow 的高級庫
- 三、Keras 101
- 四、TensorFlow 中的經典機器學習
- 五、TensorFlow 和 Keras 中的神經網絡和 MLP
- 六、TensorFlow 和 Keras 中的 RNN
- 七、TensorFlow 和 Keras 中的用于時間序列數據的 RNN
- 八、TensorFlow 和 Keras 中的用于文本數據的 RNN
- 九、TensorFlow 和 Keras 中的 CNN
- 十、TensorFlow 和 Keras 中的自編碼器
- 十一、TF 服務:生產中的 TensorFlow 模型
- 十二、遷移學習和預訓練模型
- 十三、深度強化學習
- 十四、生成對抗網絡
- 十五、TensorFlow 集群的分布式模型
- 十六、移動和嵌入式平臺上的 TensorFlow 模型
- 十七、R 中的 TensorFlow 和 Keras
- 十八、調試 TensorFlow 模型
- 十九、張量處理單元
- TensorFlow 機器學習秘籍中文第二版
- 一、TensorFlow 入門
- 二、TensorFlow 的方式
- 三、線性回歸
- 四、支持向量機
- 五、最近鄰方法
- 六、神經網絡
- 七、自然語言處理
- 八、卷積神經網絡
- 九、循環神經網絡
- 十、將 TensorFlow 投入生產
- 十一、更多 TensorFlow
- 與 TensorFlow 的初次接觸
- 前言
- 1.?TensorFlow 基礎知識
- 2. TensorFlow 中的線性回歸
- 3. TensorFlow 中的聚類
- 4. TensorFlow 中的單層神經網絡
- 5. TensorFlow 中的多層神經網絡
- 6. 并行
- 后記
- TensorFlow 學習指南
- 一、基礎
- 二、線性模型
- 三、學習
- 四、分布式
- TensorFlow Rager 教程
- 一、如何使用 TensorFlow Eager 構建簡單的神經網絡
- 二、在 Eager 模式中使用指標
- 三、如何保存和恢復訓練模型
- 四、文本序列到 TFRecords
- 五、如何將原始圖片數據轉換為 TFRecords
- 六、如何使用 TensorFlow Eager 從 TFRecords 批量讀取數據
- 七、使用 TensorFlow Eager 構建用于情感識別的卷積神經網絡(CNN)
- 八、用于 TensorFlow Eager 序列分類的動態循壞神經網絡
- 九、用于 TensorFlow Eager 時間序列回歸的遞歸神經網絡
- TensorFlow 高效編程
- 圖嵌入綜述:問題,技術與應用
- 一、引言
- 三、圖嵌入的問題設定
- 四、圖嵌入技術
- 基于邊重構的優化問題
- 應用
- 基于深度學習的推薦系統:綜述和新視角
- 引言
- 基于深度學習的推薦:最先進的技術
- 基于卷積神經網絡的推薦
- 關于卷積神經網絡我們理解了什么
- 第1章概論
- 第2章多層網絡
- 2.1.4生成對抗網絡
- 2.2.1最近ConvNets演變中的關鍵架構
- 2.2.2走向ConvNet不變性
- 2.3時空卷積網絡
- 第3章了解ConvNets構建塊
- 3.2整改
- 3.3規范化
- 3.4匯集
- 第四章現狀
- 4.2打開問題
- 參考
- 機器學習超級復習筆記
- Python 遷移學習實用指南
- 零、前言
- 一、機器學習基礎
- 二、深度學習基礎
- 三、了解深度學習架構
- 四、遷移學習基礎
- 五、釋放遷移學習的力量
- 六、圖像識別與分類
- 七、文本文件分類
- 八、音頻事件識別與分類
- 九、DeepDream
- 十、自動圖像字幕生成器
- 十一、圖像著色
- 面向計算機視覺的深度學習
- 零、前言
- 一、入門
- 二、圖像分類
- 三、圖像檢索
- 四、對象檢測
- 五、語義分割
- 六、相似性學習
- 七、圖像字幕
- 八、生成模型
- 九、視頻分類
- 十、部署
- 深度學習快速參考
- 零、前言
- 一、深度學習的基礎
- 二、使用深度學習解決回歸問題
- 三、使用 TensorBoard 監控網絡訓練
- 四、使用深度學習解決二分類問題
- 五、使用 Keras 解決多分類問題
- 六、超參數優化
- 七、從頭開始訓練 CNN
- 八、將預訓練的 CNN 用于遷移學習
- 九、從頭開始訓練 RNN
- 十、使用詞嵌入從頭開始訓練 LSTM
- 十一、訓練 Seq2Seq 模型
- 十二、深度強化學習
- 十三、生成對抗網絡
- TensorFlow 2.0 快速入門指南
- 零、前言
- 第 1 部分:TensorFlow 2.00 Alpha 簡介
- 一、TensorFlow 2 簡介
- 二、Keras:TensorFlow 2 的高級 API
- 三、TensorFlow 2 和 ANN 技術
- 第 2 部分:TensorFlow 2.00 Alpha 中的監督和無監督學習
- 四、TensorFlow 2 和監督機器學習
- 五、TensorFlow 2 和無監督學習
- 第 3 部分:TensorFlow 2.00 Alpha 的神經網絡應用
- 六、使用 TensorFlow 2 識別圖像
- 七、TensorFlow 2 和神經風格遷移
- 八、TensorFlow 2 和循環神經網絡
- 九、TensorFlow 估計器和 TensorFlow HUB
- 十、從 tf1.12 轉換為 tf2
- TensorFlow 入門
- 零、前言
- 一、TensorFlow 基本概念
- 二、TensorFlow 數學運算
- 三、機器學習入門
- 四、神經網絡簡介
- 五、深度學習
- 六、TensorFlow GPU 編程和服務
- TensorFlow 卷積神經網絡實用指南
- 零、前言
- 一、TensorFlow 的設置和介紹
- 二、深度學習和卷積神經網絡
- 三、TensorFlow 中的圖像分類
- 四、目標檢測與分割
- 五、VGG,Inception,ResNet 和 MobileNets
- 六、自編碼器,變分自編碼器和生成對抗網絡
- 七、遷移學習
- 八、機器學習最佳實踐和故障排除
- 九、大規模訓練
- 十、參考文獻